



## Lehigh University Industrial Assessment Center



## **Program Information**

- Lehigh University Industrial Assessment Center (IAC) is sponsored by the US Dept. of Energy – Office of Manufacturing and Energy Supply Chains
- We offer FULLY SUBSIDIZED energy efficiency studies and audits to small & medium manufacturers
- Provide workforce development to manufacturers and universities





Improve site energy and/or material efficiency



Improve site cybersecurity infrastructure



Improve site productivity

Reduce site waste production

What is covered under the IAC Program?



Reduce site greenhouse gas emissions and/or nongreenhouse gas pollution

## **Energy Audits at No Cost to your Facility**

- Our team will work with yours to collect information & data to support our energy savings calculations (Both on and off site)
- Complete the "Implementation survey" to provide important metrics to DOE to continue asking for funding
  - DOE won't consider audit complete until implementation survey is filled out
- No obligation to implement any recommendations
- Process is anonymous (unless you wish to publicize)



## **IAC Program Nationwide**

- 35+ IACs across USA
- Coordinated by Rutgers
   University (who will be
   compliance checking the
   results of this study)
- https://iac.university/





## **IAC Program Nationwide**

- Conducting assessments since 1978
- Over 21,000 assessments & 157,000 recommendations
  - Around 7 recommendations per report
- 51% implementation rate
  - Our center will work with you to study appealing recommendations resulting from this site visit



## IAC Program At Lehigh



- Established in 2001 20+ years
- Over 450 assessments
- Our average energy saving per assessment is 4-8% of the plant's annual energy bill
- We can typically save aggressive plants 15% of their annual energy bill
- Run by Lehigh Mechanical Engineering Faculty
  - Center Director: Dr. Alparslan Oztekin
  - Founder & Assistant Director: Dr. Sudhakar Neti
  - Co-Director: Dr. Ebru Demir





Packard Laboratory, Lehigh University

Department of Mechanical Engineering & Mechanics

## IAC Program At Lehigh

- 150 mile range can do multiple facilities or recommend to another center
- Team consists of ME faculty, graduate, and undergraduate students





## **Typical Energy Assessment Process**

- Pre-plant visit
  - Initial contact with customer
  - Energy usage analysis based on 12 month bills
- Plant visit (Remote & on-site)
- Post plant visit process



## **Plant Visit Process**

- Initial Interview
  - Verbal walkthrough of plant (less noisy, more time for discussion)
  - Come up with list of recommendations
- Plant Tour
  - Collect data and generate RFI to assist energy saving calcs
- Final Interview
  - Choose ~8 top performing recommendations from our list
  - Discuss details of how to implement



## **Post Plant Visit**

- Expect an RFI within a week from the site visit
- In 6-8 weeks (depending on availability of data) a detailed report outlining potential recommendations is prepared and submitted for compliance checking
- Each recommendation provides:
  - Energy and Cost savings, and CO2 savings
  - Implementation cost estimate (using quotes/industrial catalogues)
  - Simple Payback Period (ROI)



## **Example Report Summary Table**

| ARC<br>No.       | Description                                                            |                      | Annual Savings                       |                                                | Annual<br>Cost<br>Savings | Implementation<br>Cost | Pay Back<br>Period<br>(yrs) |  |
|------------------|------------------------------------------------------------------------|----------------------|--------------------------------------|------------------------------------------------|---------------------------|------------------------|-----------------------------|--|
| AR 1<br>2.4236.2 | Repair Leaks in<br>Compressed Air Lin                                  | nes                  | Electricity<br>Demand                | 9,639 kWh<br>(99 MMBtu)<br>23 kW               | \$1,762                   | \$1,400                | 0.8                         |  |
| AR 2<br>2.7142.3 | Switch to LED Lig                                                      | hting                | Electricity<br>Demand                | 21,344 kWh<br>(220 MMBtu)<br>44 kW             | \$3,863                   | \$5,799                | 1.6                         |  |
| AR 3<br>2.7261.3 | Install Programmab<br>Thermostats in<br>Manufacturing Are              | ole<br>a             | Electricity                          | 5,134 kWh<br>(53 MMBtu)<br>11 MMBtu            | \$1,010                   | \$1,600                | 1.6                         |  |
| AR 4<br>2.4231.2 | Reduce Compresso<br>Pressure                                           | r Set                | Electricity<br>Demand                | 4,897 kWh<br>(50 MMBtu)<br>12 kW               | \$896                     | \$2,000                | 2.3                         |  |
| AR 5<br>2.4226.2 | Install New Compr<br>Package with Varia<br>Frequency Drive (V          | essor<br>ble<br>/FD) | Electricity<br>Demand                | 26,482 kWh<br>(273 MMBtu)<br>64 kW             | \$4,840                   | \$18,014               | 3.8                         |  |
| AR 6<br>2.7425.1 | Upgrade Existing Black<br>Roof with Higher R<br>Value White Insulation |                      | Electricity<br>Demand<br>Natural Gas | 42,118 kWh<br>(435 MMBtu)<br>82 kW<br>32 MMBtu | \$7,995                   | \$37,000               | 4.7                         |  |
| AR 7<br>2.2443.1 | Use Compressor<br>Exhaust to Heat During<br>Winter Months              |                      | Natural Gas                          | 38 MMBtu                                       | \$474                     | \$2,500                | 5.3                         |  |
| Total            |                                                                        |                      | Energy<br>CO2                        | 1,215 MMBtu<br>39 metric tons                  | \$20,840                  | \$68,313               | 3.3                         |  |



## **Post Plant Visit**

- Typical factors involved in the implementation of our recommendations are:
  - Financial issues, such as cost of capital involved, Payback period, Other factors (Business environment etc.)
- During the interim period after report submission, we are available for clarifications of recommendations
- Our team will reach out in 6 months regarding the implementation report – we'll ask whether you know or think you will include a recommendation in future financial planning



# IAC Implementation Grant Program



### **Provision Summary:** IAC Implementation Grants (BIL 40521.b1)



#### ~\$80M in funding available



Grants awards of up to \$300,000 per manufacturer, at a 50% cost share; Criteria: 50% impact/feasibility; 25% financial need + cost share; 25% community benefits



Small and medium-sized manufacturer: a gross annual sales of less than \$100M (within tax group), and annual energy bills between \$100,000 -\$3,500,000

To address recommendations by IACs, DOE Combined Heat and Power TA Partnerships, or other assessments deemed equivalent by DOE



#### IAC Implementation Grants Program: Two Parallel Workstreams

Workstream 1: Implementation Grants Funding



Provide **federal funding** to eligible SMMs to implement recommendations made **in IAC or CHP TAP assessments** starting in 2018, or **qualified third-party assessments** starting in 2021 Workstream 2: Third-Party Assessor Qualification



Identify entities interested in qualifying as a "**third-party assessor that provides an assessment equivalent**" to an Industrial Assessment Center or CHP TAP assessments

#### When To Apply?

- IAC grant program operates on a rolling basis and may be submitted at any time through the year, with reviews after the following deadlines
  - December 31, 2023
  - March 31, 2024
  - **J**une 30, 2024
  - □ September 30, 2024

#### How To Apply?

In contrast to traditional DOE funding opportunities, IAC grant program has a very simple and straightforward application form and process via submittable

#### Workstream 1 Application

Workstream 2 Application

#### **Have Additional Questions?**

Click <u>here</u> to see the latest frequently asked questions (FAQs). If you have additional questions, please contact ENERGYWERX: info@energywerx.org



## **Other Resources for Clients**



## ISO 50001 & DOE ISO 50001 Ready Program





## IAC Cybersecurity Vulnerability Assessment

- <a href="https://iac.university/cybersecurity">https://iac.university/cybersecurity</a>
- Simple excel tool to determine attack vectors and response plan to common attacks
- Many factories have been hit by ransomware
- NIST documents help standardize defense methods





Source: N. Hanacek/NIST

## **Better Plants Program**

- Membership Options
  - Requires cooperate commitment
- Free Training Sessions:
- Bootcamp (Decarbonization & Energy Efficiency)
  - https://energybootcamp.ornl.gov/
  - https://decarbbootcamp.ornl.gov/
- Virtual In-Plant Trainings
  - https://bptraining.ornl.gov/
- DOE MEASUR TOOL
  - https://www.energy.gov/eere/iedo/measur



# IAC Database of Anonymous Reports





LE-IAC Shared Account -



#### IAC Assessment: CL2111

Sponsored by: U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy ADVANCED MANUFACTURING OFFICE

IAC Center Clemson University Source Yearly Cost Usage Unit Unit Cost Assessment Year 2021 Electricity Usage \$65,152 1,713,600 kWh \$0.04 Principal Product Electricity Demand \$93,532 7,668 kW-months/year Railroad Products \$12.20 \$ 336510 - Railroad Rolling Stock Manufacturing Electricity Fees \$9,912 NAICS --MMBtu SIC 3743 - Railroad Equipment Natural Gas \$16,837 \$0.08 208,675 Sales \$1,000,000-\$5,000,000 TOTAL ENERGY COSTS \$186,631 # of Employees 58 \$12,654 \*Non-energy impacts **RECOMMENDED SAVINGS\*** Plant Area (Sq.Ft.) 161.000 included in savings. IMPLEMENTED SAVINGS\* -See recommendations below Annual Production 32,000 Units Production Hrs. Annual 2,130 SC Location (State)

|                                                                          | Savings                   |        | Electricity Usage |        | Electricity Demand |                |
|--------------------------------------------------------------------------|---------------------------|--------|-------------------|--------|--------------------|----------------|
| # Description                                                            | Cost                      | Status | \$                | kWh    | \$                 | kW-months/year |
| 01: 2.7142 UTILIZE HIGHER EFFICIENCY LAMPS AND/OR BALLASTS               | <b>\$5,665</b><br>\$4,684 | ?      | \$3,518           | 87,960 | \$2,146            | 176            |
| 02: 2.7135 INSTALL OCCUPANCY SENSORS                                     | <b>\$1,957</b><br>\$3,255 | ?      | \$1,957           | 48,930 | -                  | -              |
| 03: 2.4231 REDUCE THE PRESSURE OF COMPRESSED AIR TO THE MINIMUM REQUIRED | \$512<br>-                | ?      | \$266             | 6,640  | \$246              | 20             |
| 04: 2.7261 INSTALL TIMERS AND/OR THERMOSTATS                             | \$3,930<br>-              | ?      | \$3,930           | 98,253 | -                  | -              |
| AF A 1000                                                                | 4500                      |        |                   |        |                    |                |

